Linear Algebra

HomeTable of Contents

Physical Vectors

Resultants

Vector Negation & Difference

Vector Components

Unit Vectors

Adding Vectors by Components

Vector Multiplication

Scalar Product

Dot Product

Cross Product

Real Vectors

Scalar Multiplication

Linear Equations

Systems of Linear Equations

Homogeneous Linear Systems

Augmented Matrices

Gaussian Elimination

Row Reduction

Graphical Solutions

Linear Systems in ℝ²

Linear Systems in ℝ³

Echelon Forms

Add 3{-3} times the first equation to the third equation.

{x+y+2z=92y7z=173y11z=27 \begin{cases} x + y + 2z = 9 \\ 2y - 7z = -17 \\ 3y - 11z = -27 \end{cases}

Add 2{-2} times the first row to the second row.

[112902717031127]. \left\lbrack\hspace{-5pt}\begin{array}{ccc|c} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 0 & 3 & -11 & -27 \end{array}\hspace{-5pt}\right\rbrack.

Multiply the second equation by 12.{\frac{1}{2}.}

{x+y+2z=9y72z=1723y11z=27 \begin{cases} x + y + 2z = 9 \\ y - \frac{7}{2}z = -\frac{17}{2} \\ 3y - 11z = -27 \end{cases}

Multiply the second row by 12.{\frac{1}{2}.}

[11290172172031127]. \left\lbrack\hspace{-5pt}\begin{array}{ccc|c} 1 & 1 & 2 & 9 \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 3 & -11 & -27 \end{array}\hspace{-5pt}\right\rbrack.

Add 3{-3} times the second equation to the third equation.

{x+y+2z=9y72z=17212z=32 \begin{cases} x + y + 2z = 9 \\ y - \frac{7}{2}z = -\frac{17}{2} \\ -\frac{1}{2}z = -\frac{3}{2} \end{cases}

Add 3{-3} times the second row to the third row.

[11290172172001232]. \left\lbrack\hspace{-5pt}\begin{array}{ccc|c} 1 & 1 & 2 & 9 \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 0 & -\frac{1}{2} & -\frac{3}{2} \end{array}\hspace{-5pt}\right\rbrack.

Multiply the third equation by 2.{-2.}

{x+y+2z=9y72z=172z=3 \begin{cases} x + y + 2z = 9 \\ y - \frac{7}{2}z = -\frac{17}{2} \\ z = 3 \end{cases}

Multiply the third row by 2.{-2.}

[112901721720013]. \left\lbrack\hspace{-5pt}\begin{array}{ccc|c} 1 & 1 & 2 & 9 \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 0 & 1 & 3 \end{array}\hspace{-5pt}\right\rbrack.

Add 1{-1} times the second equation to the first equation.

{x+112z=352y72z=172z=3 \begin{cases} x + \frac{11}{2} z = \frac{35}{2} \\ y - \frac{7}{2}z = -\frac{17}{2} \\ z = 3 \end{cases}

Add 1{-1} times the second row to the first row.

[1011235201721720013]. \left\lbrack\hspace{-5pt}\begin{array}{ccc|c} 1 & 0 & \frac{11}{2} & \frac{35}{2} \\ 0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\ 0 & 0 & 1 & 3 \end{array}\hspace{-5pt}\right\rbrack.

Add 112{-\frac{11}{2}} times the third equation to the first equation and 72{\frac{7}{2}} times the third equation to the second equation.

{x=1y=2z=3 \begin{cases} x = 1 \\ y = 2 \\ z = 3 \end{cases}

Add 112{-\frac{11}{2}} times the third row to the first row and 72{\frac{7}{2}} times the third row to the second row.

[100101020013]. \left\lbrack\hspace{-5pt}\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{array}\hspace{-5pt}\right\rbrack.

We see that the solution space comprises exactly one solution:

[xyz]=[123]. \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.

Parametric Solutions

Gauss-Jordan Elimination

Matrices & Linear Equations

Matrices

Matrix Equality

Matrix Addition

Matrix Multiplication

Hadamard Product

Scalar Multiplication

Row-Column Dot Product

In real arithmetic, we know that ab=ba{ab = ba} (the commutative law of multiplication). This law does not hold for matrix multiplication (it is very rarely the case that AB=BA;{AB = BA;} in fact, you have better luck assuming ABBA{AB \neq BA}). The test AB=BA{AB = BA} can fail for possible reasons:

  1. AB{AB} is defined, but BA{BA} is not.
  2. AB{AB} and BA{BA} are both defined, but they are of different orders.
  3. AB{AB} and BA{BA} are both defined, AB{AB} and BA{BA} have the same orders, but the product's entries are different.

Matrices & Linear Combinations

Transpose of a Matrix

Trace of a Matrix

Properties of Matrix Algebra